Limit laws for functions of fringe trees for binary search trees and random recursive trees

نویسندگان

  • Cecilia Holmgren
  • Svante Janson
چکیده

We prove general limit theorems for sums of functions of subtrees of (random) binary search trees and random recursive trees. The proofs use a new version of a representation by Devroye, and Stein’s method for both normal and Poisson approximation together with certain couplings. As a consequence, we give simple new proofs of the fact that the number of fringe trees of size k = kn in the binary search tree or in the random recursive tree (of total size n) has an asymptotical Poisson distribution if k → ∞, and that the distribution is asymptotically normal for k = o( √ n). Furthermore, we prove similar results for the number of subtrees of size k with some required property P , e.g., the number of copies of a certain fixed subtree T . Using the Cramér–Wold device, we show also that these random numbers for different fixed subtrees converge jointly to a multivariate normal distribution. We complete the paper by giving examples of applications of the general results, e.g., we obtain a normal limit law for the number of `-protected nodes in a binary search tree or in a random recursive tree.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

Stein Couplings to Show Limit Laws for Fringe Trees

The binary search tree or Quicksort is the most used of all sorting algorithm, since it is both fast and simple. The random recursive tree is another extensively studied random tree. We have examined fringe trees in these two types of random trees, since the study of such subtrees appears to be an effective approach towards defining characteristics also of the whole tree. By using a representat...

متن کامل

Limit Theorems for Subtree Size Profiles of Increasing Trees

Simple families of increasing trees have been introduced by Bergeron, Flajolet and Salvy. They include random binary search trees, random recursive trees and random plane-oriented recursive trees (PORTs) as important special cases. In this paper, we investigate the number of subtrees of size k on the fringe of some classes of increasing trees, namely generalized PORTs and d-ary increasing trees...

متن کامل

Using Stein’s Method to Show Poisson and Normal Limit Laws for Fringe Subtrees

We consider sums of functions of fringe subtrees of binary search trees and random recursive trees (of total size n). The use of Stein’s method and certain couplings allow provision of simple proofs showing that in both of these trees, the number of fringe subtrees of size k < n, where k → ∞, can be approximated by a Poisson distribution. Combining these results and another version of Stein’s m...

متن کامل

Subtree Sizes in Recursive Trees and Binary Search Trees: Berry-Esseen Bounds and Poisson Approximations

We study the number of subtrees on the fringe of random recursive trees and random binary search trees whose limit law is known to be either normal or Poisson or degenerate depending on the size of the subtree. We introduce a new approach to this problem which helps us to further clarify this phenomenon. More precisely, we derive optimal Berry-Esseen bounds and local limit theorems for the norm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015